
A Survey on Bitemporal Data Warehousing
System and Data Warehouse Design Techniques.

P.N.V.S.Pavan Kumar, K.Bala Chowdappa, S.Subba Lakshmi

CSE Department, G.Pulla Reddy Engineering College(Autonomous)
Nandyala Road,Kurnool,Andhra Pradesh, INDIA

 Abstract—In this paper we consider the former accepted
definition of W.H.Innmon and is rewritten in terms of well
established later temporal concepts. With reference to a three-
level architecture, we address some topics namely: Temporal
databases and granularity system, handling changes in the
data warehouse, handling changes in the data mart, and
designing temporal data warehouses and a survey is made on
these concepts.

Keywords—Data warehouse, data mart, design evolution,
temporal databases.

I. INTRODUCTION
 A Data warehouse is defined as an environment of
information and multidimensional database whose content
is subject-oriented, integrated, time-variant, and
nonvolatile collection of data, from various operational
databases, for making strategic decisions in the business.
Since the decision process typically requires an analysis of
historical trends, time and its management acquire a huge
importance. Data warehousing is the design and
implementation of processes, tools, and facilities to
manage and deliver complete, timely, accurate, and
understandable information for decision making. It
includes all the activities that make it possible for an
organization to create, manage, and maintain a data
warehouse or data mart.
 “Time-variance” simply specifies that every
record in the data warehouse is accurate relative to some
moment in time. On the other hand, the definition of
“Valid Time” states that it is the time when the fact is true
in the modeled reality. Moreover,”Non-volatility” refers to
the fact that changes in the Data warehouse are captured in
the form of a “time variant snap shot”. Instead of true
updates, a new snapshot is added to the Data warehouse in
order to reflect changes. This concept can be clearly
identified with that of “Transaction Time”, defined as the
time when the fact is current in the data base.
A Data warehouse is a Bitemporal database containing
integrated, subject-oriented data in support of the decision
making process, as it is sketched in Fig.1 that relies on
three levels[1].The first implication of this definition is that
Transaction Time is entirely maintained by the system and
no user is allowed to change it. Moreover the system
should also provide specific management mechanisms for
valid time. The bitemporal data warehouse definition
shows how the existence of the temporal dimension is
inferred from its definition.

Fig.1 A Bitemporal three level architecture of a data warehouse.

 There has been a lot of research so far
regarding temporal issues in data warehousing systems.
Basically, the approaches devised in the literature can
be accommodated in the following (sometimes
overlapping) categories:
• Handling changes in the data warehouse.
• Handling changes in the data mart.
• Designing temporal data warehouses
The paper outline is completed by the second section that
introduces the main concepts and terminology of temporal
databases and granularity system. The last section
summarizes some open issues and draws the conclusions.

II. TEMPORAL DATABASES AND GRANULARITY SYSTEM.
 Databases where time is not represented are often called
transient databases. Within a transient database, only the
current representation of real-world objects is stored and
no track of changes is kept, so it is impossible to
reconstruct how the object was in the past. Conversely,
temporal databases focus on representing the inherent
temporal nature of objects through the time-dependent
recording of their structure and state. Two different time

P.N.V.S. Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3227 - 3231

3227

dimensions are normally considered in temporal databases,
namely valid time and transaction time [2]. Valid time is
the “real-world time”, i.e., it expresses the time when a fact
is true in the business domain. Transaction time is the
“database system time”, i.e., it expresses the time when
facts are registered in the database. Temporal database
systems are called valid time databases, transaction-time
databases or bi-temporal databases depending on their
capacity to handle either or both of these two time
dimensions [3].
 Multidimensional modeling perfectly suits for small
departmental data warehouses. Hence data marts are built.
Data marts contain a partial history of data or data current
at a given time. Therefore it is not only necessary to extract
temporal data, but also to convert bitemporal data in the
data warehouse to data structures with only one temporal
dimension in the data marts. In this sense it is very helpful
to apply the valid time and transaction time snapshot
operations of temporal databases [4]. The valid time
snapshot operation is applied to extract, from a bitemporal
relation, the tuples valid at a given time and the transaction
time snapshot operation is applied to extract the tuples
current at a given time.
 A data base which allows facts to be expressed in terms
of different granularities is called a temporal database with
multiple granularities. The notion of granularity system is
an excellent temporal database tool to solve the data
warehouse problem of different granularities
integration.Formally,in temporal data bases, a granule is a
set of time instants perceived as a non decomposable
temporal entity when used to describe a phenomenon or
when used to time stamp a set of data. A granule can be
composed of a single instant, a set of contiguous instants
(time intervals), or even a set of non-contiguous instants.
The use of this algebra [5] for symbolic manipulation of
granularities could be a well data warehouse integration
solution.

III. HANDLING CHANGES IN THE DATA WAREHOUSE.
 This mainly has to do with maintaining the data
warehouse in sync with the data sources when changes on
either of these two levels occur.
A. Temporal Study of Data Sources
 The input data of the Data warehouse is provided by the
data sources that are integrated. Depending on whether the
data sources manage Transaction Time and Valid Time or
not, we could obtain the Valid Time for the Data
warehouse or not. Transaction Time in the data warehouse
can always be obtained, because it is internal to a given
storage system. When an event is loaded into the Data
warehouse, its Valid Time, supplied by the “Extraction,
Transformation and Load” (ETL) module, is transformed
into a bitemporal element, adding Transaction Time,
generated by the data warehouse DBMS.Different kinds of
data sources can be classified based on the temporal
information we could obtain from them (see Fig.2):
1. From “snapshot” and “queriable” sources that do not

keep any kind of time, we can only store the TT
(Transaction Time) in the data warehouse.

2. From “logged” and “specific” (those able to write “delta
files”) sources, if they timestamp the entries, we can
consider that the TT in the sources corresponds to
VT(Valid Time) for the data warehouse. If no other
information exists, the data is considered valid while it
is current in the operational database.

3. From “cooperative” (for instance, those that implement
triggers) sources, the TT in the sources corresponds
again to the VT in the data warehouse. Moreover,
since both repositories are updated at the same time,
TT in the data warehouse also corresponds to TT in
the sources.

4. From bitemporal data sources, we could obtain VT and
TT.

Out of this four situations, the most common is the second
one.

Fig 2 Transformations of time attributes

B. Description of Delta Operations
 The delta files contain time stamped inserts, updates and
deletes of values in the data sources. Let us analyze the
effect that each of them has in the data warehouse:

Fig 3 Effect of delta operations

Fig 4 Valid area for VT and TT values

Insert: When an insertion (time stamped with the
operational TT) is found in a delta file a new bitemporal
element is always generated in the data warehouse (as
depicted in Fig.3). A bitemporal event occurs at a “starting
VT” (Vs) and is true until an “ending VT” (Ve). The Vs

corresponds to the timestamp in the delta file (i.e. t1).
However, Ve is not known at this moment, since data is
currently valid in the sources. This is expressed with the
special VT value “Now”, whose semantics are explained in
[6]. For example, if we hire an employee, the Vs will be the

P.N.V.S. Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3227 - 3231

3228

time when her/his data are introduced in the personnel
database, and the Ve will be the value “Now”, until s/he is
fired. Insertions initialize the “starting TT” (Ts) to the
current time (i.e. t2) and the “ending TT” (Te) to the value
“Until changed” (UC). As the current time inexorably
advances, the value of UC always reflects the current time.
Delete: A deletion (also time stamped with the operational
TT) generates the logical removal of the existing
bitemporal element in the DW. The value of Te is changed
to the current time, when the DW is loaded, minus one (i.e.
t4-1). However, as it is shown in Fig.3, this is not enough.
A new bitemporal element is required, which expresses
that from now on we know the Ve , i.e. the timestamp in
the delta file (i.e. t3). Therefore, a deletion in the data
sources implies an update and an insert in the DW.
Update: Without loss of generality, the modification is
defined by the deletion of old data immediately followed
by the insertion of new values.
Fig. 4 graphically shows the four temporal points of Fig 3.
Since we cannot delete data that was not previously
inserted, it is true that t1<t3. Moreover, the delete will
always be found strictly after the insert in the delta file.
Therefore, t2<t4 and for every data there exist two
bitemporal rectangles. One of them is open at top, because
Ve is “Now”. Notice that all time values in the delta files
are previous to the load of the DW, which implies that
t1<t2 and t3<t4. Since t1<t2, both rectangles have the
bottom line below the diagonal of the graphic (which
represents events that occur at the same time that they are
recorded in the DW). The fact that t3< t4 implies that the
closed rectangle also has the top line below the diagonal.
However, nothing can be said about the relationship
between t2 and t3, because the deletion could happen
between the insertion and its load (t3<t2) or after the load
of the insertion (t2<t3). Nevertheless, since t2 and t3 are
never used in the same temporal element, it only has effect
on the position of the rectangles along the TT axis.
When considering temporal data, it is first of all necessary
to understand how time is reflected in the database, and
how a new piece of information affects existing data. From
this point of view, Devlin (1997) proposes the following
classification [7]:
• Transient data: alterations and deletions of existing

records physically destroy the previous data content.
• Periodic data: once a record is added to a database, it

is never physically deleted, nor is its content ever
modified. Rather, new records are added to reflect
updates or deletions. Periodic data thus represent a
complete record of the changes that have occurred in
the data.

• Semi-periodic data: in some situations, due to
performance and/or storage constraints, only the more
recent history of data changes is kept.

 Snapshot data: a data snapshot is a stable view of
data as it exists at some point in time, not containing
any record of the changes that determined it. A
series of snapshots can provide an overall view of the
history of an organization.

 Data sources normally adopt either a transient or a
(semi-)periodic approach, depending on whether the

application domains require keeping history of past data or
not. The historical depth of a data warehouse is typically
not less than the one of its data sources, thus data
warehouses more often contain periodic data. Conversely,
data marts normally conform to the snapshot model
 In order to model historical data in the data warehouse,
Abello and Martin (2003) propose a bi-temporal storage
structure [8] where each attribute is associated to two
couples of timestamps, so as to track the history of its
values according to both valid and transaction time. Since
the data warehouse can be thought of
as a set of derived, materialized views defined over a set of
source schemata, the problem of evolving the content and
the schema of derived views in connection to the source
changes is highly relevant in the context of temporal data
warehouses. Bellahsene (2002) distinguishes two sub
problems, view maintenance and view adaptation [9].
Considering the width of the problem, we refer the reader
to Gupta & Mumick (1995) for taxonomy of view
maintenance problems [10] and a description of the main
techniques proposed in the literature.
 Yang & Widom (1998)[11] describe an architecture that
uses incremental techniques to automatically maintain
temporal views over non-temporal source relations,
allowing users to ask temporal queries on these views. De
Amo & Halfeld Ferrari Alves (2000) present a self-
maintainable temporal data warehouse that, besides a set of
temporal views, includes a set of auxiliary relations
containing only temporal information. Bellahsene (1998)
[12] proposes an extended relational view model to support
view adaptation, aimed at maintaining data coherence and
preserving the validity of the existing application
programs.
In the EVE framework (Lee, Nica, & Rundensteiner,
2002), in order to automate the redefinition of a view
in response to schema changes in the data sources, the
database administrator is database administrator is allowed
to embed her preferences about view evolution into the
view definition itself. The preference-based view rewriting
process, called view synchronization, identifies and
extracts appropriate information from other data sources as
replacements of the affected components of the original
view definition, in order to produce an alternative view that
somehow preserves the original one. Finally, the DyDa
framework (Chen, Zhang, & Rundensteiner, 2006)
supports compensating queries that cope with erroneous
results in view maintenance due to concurrent updates in
data source, in presence of data and schema changes.
 A distinctive feature of the AutoMed system (Fan &
Poulovassilis, 2004) is the capability of handling not only
schema evolutions in materialized data integration
scenarios, but also changes in the data model in which the
schema is expressed (e.g., XML vs. relational).
 With reference to the problem of keeping the data
warehouse in sync with the sources, Wrembel and Bebel
(2007) propose a metamodel for handling changes in the
operational data sources, which supports the automatic
detection of structural and content changes in the sources
and their automatic propagation to the data warehouse.
Finally, Combi & Oliboni (2007) focus on the management

P.N.V.S. Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3227 - 3231

3229

of time-variant semi-structured XML data within the data
warehouse. In particular, they propose a representation
based on graphs whose nodes denote objects or values and
are labeled with their validity interval.

IV. HANDLING CHANGES IN THE DATA MART
 Content changes result from user activities that perform
their day-to-day work on data sources by means of
different applications (Wrembel & Bebel, 2007). These
changes are reflected in the data warehouse and then in the
data marts fed from it. The multidimensional model
provides direct support for representing the sequence of
events that constitute the history of a fact: by including a
temporal dimension (say, with date granularity) in the fact,
each event is associated to its date. For instance, if we
consider an ORDER fact representing the quantities in the
lines of orders received by a company selling PC
consumables, the dimensions would probably be product,
order Number, and order Date. Thus each line of order
would be associated to the ordered product, to the number
of the order it belongs to, and to the order date. On the
other hand, the multidimensional model implicitly assumes
that the dimensions and the related levels are entirely
static. This assumption is clearly unrealistic in most cases;
for instance, considering again the order domain, a
company may add new categories of products to its catalog
while others can be dropped, or the category of a product
may change in response to the marketing policy. Another
common assumption is that, once each line of order has
been registered in a data mart, it is never modified so that
the only possible writing operation consists in appending
new line of orders as they occur. While this is acceptable
for a wide variety of domains, some applications call for a
different behavior; for example the quantity of a product
ordered in a given day could be wrongly registered or
could be communicated after the ETL process has run.
These few examples emphasize the need for a correct
handling of changes in the data mart content. Differently
from the problem of handling schema changes, the issues
related to data changes have been widely addressed by
researchers and practitioners, even because in several cases
they can be directly managed in commercial DBMSs.

V. DESIGNING TEMPORAL DATA WAREHOUSES
 It is widely recognized that designing a data warehousing
system requires techniques that are radically different from
those normally adopted for designing operational
databases (Golfarelli & Rizzi, 1999). On the other hand,
though the literature reports several attempts to devise
design methodologies for data warehouses, very few
attention has been posed on the specific design issues
related to time. Indeed, as stated by Rizzi et al. (2006),
devising design techniques capable of taking time and
changes into account is one of the open issues in data
warehouse research. Pedersen and Jensen (1999) [13]
recognize that properly handling time and changes is a
must-have for multidimensional models. Sarda (1999)
summarizes the distinguishing characteristics of time
dimensions: they are continuously valued and constantly
increasing, they can be associated with multiple user-

defined calendars, they express the validity of both facts
and other dimensions (either in the form of time instants or
validity intervals). Sarda also proposes a design
methodology for temporal data warehouses featuring two
phases: logical design, that produces relations
characterized by a temporal validity, and physical design,
that addresses efficient storage and access.Considering the
leading role played by temporal hierarchies within data
marts and OLAP queries, it is worth adopting adhoc
approaches for their modeling not only from the logical,
but also from the conceptual point of view. While all
conceptual models for data marts allow for temporal
hierarchies to be represented like any other hierarchies, to
the best of our knowledge the only approach that provides
ad hoc concepts for modeling time is the one by
Malinowski & Zimányi (2008), based on a temporal
extensions of the MultiDim conceptual model. Different
temporality types are allowed (namely, valid time,
transaction time, lifespan, and loading time), and temporal
support for levels, properties, hierarchies, and measures is
granted. Finally, Golfarelli & Rizzi (2007) [14] discuss the
different design solutions that can be adopted in presence
of late measurements, depending on the flow or stock
nature of the events and on the types of queries to be
executed.

VI. OPEN ISSUES AND CONCLUSIONS
 In this survey we classified and discussed the issues
related to temporal data warehousing.We believe that,
considering the maturity of the field and the wide diffusion
of data warehousing systems, in the near future
decision makers will be more and more demanding for
advanced temporal support. Thus, it is essential that both
vendors and researchers be ready to deliver effective
solutions. In this direction we envision two main open
issues. On the one hand, some research aspects indeed
require further investigation. For instance, support for
cross version queries is not satisfactory yet, and its impact
on performance has not been completely investigated;
similarly, the effectiveness of view adaptation approaches
is still limited.

ACKNOWLEDGEMENT:
 We would like to give special thanks to K.Bala
Chowdappa, and S.Subbalakshmi, Assistant Professors in
CSE Department of G.Pulla Reddy Engineering
College,who participated in our survey studies and paper
preparation and provided valuable suggestions in this
survey.
 Thanks for all my faculty members, students and
other authors who directly or indirectly supported me in
writing this journal.

REFERENCES
[1]. Matteo Golfarelli, Stefano Rizzi,DEIS-University of Bologna,

Italy.”Survey Article: A survey on temporal data warehousing”.
International Journal of Data Warehousing & Mining, 5(1), 1-17,
January-March 2009.

[2]. Jensen, C., Clifford, J., Elmasri, R., Gadia, S. K., Hayes, P. J., &
Jajodia, S. (1994).” A Consensus Glossary of Temporal Database
Concepts”.ACM SIGMOD Record, 23(1),52-64.

P.N.V.S. Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3227 - 3231

3230

[3]. Tansel, A. U., Clifford, J., Gadia, S. K., Jajodia, S., Segev, A., &
Snodgrass, R. T. (1993). Temporal databases: theory, design and
implementation.Benjamin Cummings.

[4]. Christian S.Jensen, Michael D.Soo, and Richard T.Snodgrass.
“Extending Normal forms to Temporal Relations”. Technical Report
TR-92-17, Computer Science Department. University of Arizona,
1992.

[5]. Claudio Bettini, Sushil Jajodia,and X.Sean Wang. Time
Granularities in databases,Data Mining and temporal
reasoning.Springer-Verlag, 2000.

[6]. Clifford, J., Dyreson, C., Isakowitz, T., Jensen, C. S., and
Snodgrass, R. T. (1997). On the Semantics of “Now” in Databases.
ACM Transactions on Database Systems, 22(2):171–214.

[7]. Devlin, B. (1997). “Managing Time In The Data Warehouse”.
InfoDB, 11(1),7-12.

[8]. Abelló, A., & Martin, C. (2003). A Bi-temporal Storage Structure
for a Corporate Data warehouse. Proceedings International
conference on Enterprise Information Systems, Angers, France, 177-
183.

[9]. Bellahsene, Z. (2002). Schema Evolution in Data Warehouses.
Knowledge and Information Systems, 4(3), 283-304.

[10]. Gupta, A., & Mumick, I. S. (1995). Maintenance of materialized
views: problems, techniques, and applications. Data Engineering
Bulletin, 18(2), 3-18.

[11]. Yang, J. & Widom, J. (1998). Maintaining Temporal Views over
Non-Temporal Information Sources for Data Warehousing.
Proceedings International Conference on Extending Database
Technology, Valencia, Spain, 389-403.

[12]. Bellahsene, Z. (1998). View Adaptation in Data Warehousing
Systems. Proceedings International Conference on Database and
Expert Systems Applications, Vienna, Austria, 300-309.

[13]. Pedersen, T. B. & Jensen, C. (1999). Multidimensional Data
Modeling for Complex Data. Proceedings International Conference
on Data Engineering, Sydney, Austrialia, 336-345.

[14]. Golfarelli, M. & Rizzi, S. (2007b). Managing late measurements in
data warehouses. International Journal of Data Warehousing and
Mining, 3(4), 51-67.

P.N.V.S. Pavan Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3227 - 3231

3231

