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      Abstract—In this paper we consider the former accepted 
definition of W.H.Innmon and is rewritten in terms of well 
established later temporal concepts. With reference to a three-
level architecture, we address some topics namely: Temporal 
databases and granularity system, handling  changes in the 
data warehouse, handling changes in the data mart,  and 
designing temporal data warehouses and  a survey is made on 
these concepts.  
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I. INTRODUCTION 
 A Data warehouse is defined as an environment of 
information and multidimensional database whose content 
is subject-oriented, integrated, time-variant, and 
nonvolatile collection of data, from various operational 
databases, for making strategic decisions in the business. 
Since the decision process typically requires an analysis of 
historical trends, time and its management acquire a huge 
importance. Data warehousing is the design and 
implementation of processes, tools, and facilities to 
manage and deliver complete, timely, accurate, and 
understandable information for decision making. It 
includes all the activities that make it possible for an 
organization to create, manage, and maintain a data 
warehouse or data mart.  
 “Time-variance” simply specifies that every 
record in the data warehouse is accurate relative to some 
moment in time. On the other hand, the definition of 
“Valid Time” states that it is the time when the fact is true 
in the modeled reality. Moreover,”Non-volatility” refers to 
the fact that changes in the Data warehouse are captured in 
the form of a “time variant snap shot”. Instead of true 
updates, a new snapshot is added to the Data warehouse in 
order to reflect changes. This concept can be clearly 
identified with that of “Transaction Time”, defined as the 
time when the fact is current in the data base. 
A Data warehouse is a Bitemporal database containing 
integrated, subject-oriented data in support of the decision 
making process, as it is sketched in  Fig.1 that relies on 
three levels[1].The first implication of this definition is that 
Transaction Time is entirely maintained by the system and 
no user is allowed to change it. Moreover the system 
should also provide specific management mechanisms for 
valid time. The bitemporal data warehouse definition 
shows how the existence of the temporal dimension is 
inferred from its definition. 

 
Fig.1 A Bitemporal three level architecture of a data warehouse. 
 

 There has been a lot of  research  so  far  
regarding  temporal  issues  in  data  warehousing  systems.  
Basically,  the approaches  devised  in  the  literature  can  
be accommodated  in  the  following  (sometimes 
overlapping) categories: 
• Handling changes in the data warehouse.  
• Handling changes in the data mart.  
• Designing temporal data warehouses  
The paper outline is completed by the second section that 
introduces the main concepts and terminology of temporal 
databases and granularity system. The last section 
summarizes some open issues and draws the conclusions. 
 
II. TEMPORAL DATABASES AND GRANULARITY SYSTEM. 
    Databases where time is not represented are often called 
transient databases. Within a transient database, only the 
current representation of real-world objects is stored and 
no track of changes is kept, so it is impossible to 
reconstruct how the object was in the past. Conversely, 
temporal databases focus on representing the inherent 
temporal nature of objects through the time-dependent 
recording of their structure and state. Two different time 
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dimensions are normally considered in temporal databases, 
namely valid time and transaction time [2]. Valid time is 
the “real-world time”, i.e., it expresses the time when a fact 
is true in the business domain. Transaction time is the 
“database system time”, i.e., it expresses the time when 
facts are registered in the database.     Temporal database 
systems are called valid time databases, transaction-time 
databases or bi-temporal databases depending on their 
capacity to handle either or both of these two time 
dimensions [3]. 
   Multidimensional modeling perfectly suits for small 
departmental data warehouses. Hence data marts are built. 
Data marts contain a partial history of data or data current 
at a given time. Therefore it is not only necessary to extract 
temporal data, but also to convert bitemporal data in the 
data warehouse to data structures with only one temporal 
dimension in the data marts. In this sense it is very helpful 
to apply the valid time and transaction time snapshot 
operations of temporal databases [4]. The valid time 
snapshot operation is applied to extract, from a bitemporal 
relation, the tuples valid at a given time and the transaction 
time snapshot operation is applied to extract the tuples 
current at a given time. 
     A data base which allows facts to be expressed in terms 
of different granularities is called a temporal database with 
multiple granularities. The notion of granularity system is 
an excellent temporal database tool to solve the data 
warehouse problem of different granularities 
integration.Formally,in temporal data bases, a granule is a 
set of time instants perceived as a non decomposable 
temporal entity when used to describe a phenomenon or 
when used to time stamp a set of data. A granule can be 
composed of a single instant, a set of contiguous instants 
(time intervals), or even a set of non-contiguous instants. 
The use of this algebra [5] for symbolic manipulation of 
granularities could be a well data warehouse integration 
solution. 
 

III. HANDLING CHANGES IN THE DATA WAREHOUSE. 
   This mainly has to do with maintaining the data 
warehouse in sync with the data sources when changes on 
either of these two levels occur. 
A. Temporal Study of Data Sources 
  The input data of the Data warehouse is provided by the 
data sources that are integrated. Depending on whether the 
data sources manage Transaction Time and Valid Time or 
not, we could obtain the Valid Time for the Data 
warehouse or not. Transaction Time in the data warehouse 
can always be obtained, because it is internal to a given 
storage system. When an event is loaded into the Data 
warehouse, its Valid Time, supplied by the “Extraction, 
Transformation and Load” (ETL) module, is transformed 
into a bitemporal element, adding Transaction Time, 
generated by the data warehouse DBMS.Different kinds of 
data sources can be classified based on the temporal 
information we could obtain from them (see Fig.2): 
1. From “snapshot” and “queriable” sources that do not 

keep any kind of time, we can only store the TT 
(Transaction Time) in the data warehouse. 

2. From “logged” and “specific” (those able to write “delta 
files”) sources, if they timestamp the entries, we can 
consider that the TT in the sources corresponds to 
VT(Valid Time) for the  data warehouse. If no other 
information exists, the data is considered valid while it 
is current in the operational database. 

3. From “cooperative” (for instance, those that implement 
triggers) sources, the TT in the sources corresponds 
again to the VT in the  data warehouse. Moreover, 
since both repositories are updated at the same time, 
TT in the  data warehouse also corresponds to TT in 
the sources. 

4. From bitemporal data sources, we could obtain VT and 
TT. 

Out of this four situations, the most common is the second 
one. 

 
Fig 2 Transformations of time attributes 

 

B. Description of Delta Operations 
    The delta files contain time stamped inserts, updates and 
deletes of values in the data sources. Let us analyze the 
effect that each of them has in the data warehouse: 
 

 
Fig 3  Effect of delta operations 

 

 
Fig 4 Valid area for VT and TT values 

 

Insert: When an insertion (time stamped with the 
operational TT) is found in a delta file a new bitemporal 
element is always generated in the  data warehouse (as 
depicted in Fig.3). A bitemporal event occurs at a “starting 
VT” (Vs) and is true until an “ending VT” (Ve). The Vs 

corresponds to the timestamp in the delta file (i.e. t1). 
However, Ve is not known at this moment, since data is 
currently valid in the sources. This is expressed with the 
special VT value “Now”, whose semantics are explained in 
[6]. For example, if we hire an employee, the Vs will be the 
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time when her/his data are introduced in the personnel 
database, and the Ve will be the value “Now”, until s/he is 
fired. Insertions initialize the “starting TT” (Ts) to the 
current time (i.e. t2) and the “ending TT” (Te) to the value 
“Until changed” (UC). As the current time inexorably 
advances, the value of UC always reflects the current time. 
Delete: A deletion (also time stamped with the operational 
TT) generates the logical removal of the existing 
bitemporal element in the DW. The value of Te is changed 
to the current time, when the DW is loaded, minus one (i.e. 
t4-1). However, as it is shown in Fig.3, this is not enough. 
A new bitemporal element is required, which expresses 
that from now on we know the Ve , i.e. the timestamp in 
the delta file (i.e. t3). Therefore, a deletion in the data 
sources implies an update and an insert in the DW. 
Update: Without loss of generality, the modification is 
defined by the deletion of old data immediately followed 
by the insertion of new values. 
Fig. 4 graphically shows the four temporal points of Fig 3. 
Since we cannot delete data that was not previously 
inserted, it is true that t1<t3. Moreover, the delete will 
always be found strictly after the insert in the delta file. 
Therefore, t2<t4 and for every data there exist two 
bitemporal rectangles. One of them is open at top, because 
Ve is “Now”. Notice that all time values in the delta files 
are previous to the load of the DW, which implies that 
t1<t2 and t3<t4. Since t1<t2, both rectangles have the 
bottom line below the diagonal of the graphic (which 
represents events that occur at the same time that they are 
recorded in the DW). The fact that t3< t4 implies that the 
closed rectangle also has the top line below the diagonal. 
However, nothing can be said about the relationship 
between t2 and t3, because the deletion could happen 
between the insertion and its load (t3<t2) or after the load 
of the insertion (t2<t3). Nevertheless, since t2 and t3 are 
never used in the same temporal element, it only has effect 
on the position of the rectangles along the TT axis. 
When considering temporal data, it is first of all necessary 
to understand  how  time is reflected in the database, and  
how a new piece of information affects existing data. From 
this point of view, Devlin (1997) proposes the following 
classification [7]: 
•  Transient data: alterations and deletions of existing 

records physically destroy the previous data content. 
•  Periodic data: once a record is added to a database, it 

is never physically deleted, nor is its content ever 
modified. Rather, new records are added to reflect 
updates or deletions. Periodic data thus represent a 
complete record of the changes that have occurred in 
the data. 

•  Semi-periodic data: in some situations, due to 
performance and/or storage constraints, only the more 
recent history of data changes is kept. 

  Snapshot data: a data snapshot is a stable view of 
data as it exists at some point in time,  not  containing  
any  record  of  the changes  that  determined  it.  A 
series of snapshots can provide an overall view of the 
history of an organization.  

      Data sources normally adopt either a transient or a 
(semi-)periodic approach, depending on whether the 

application domains require keeping history of past data or 
not. The historical depth of a data warehouse is typically 
not less than the one of its data sources, thus data 
warehouses more often contain periodic data. Conversely, 
data marts normally conform to the snapshot model  
      In order to model historical data in the data warehouse, 
Abello and Martin (2003) propose a  bi-temporal  storage  
structure [8]  where  each attribute is associated to two 
couples of timestamps, so as to track the history of its 
values according to both valid and transaction time. Since 
the data warehouse can be thought of  
as a set of derived, materialized views defined over a set of 
source schemata, the problem of evolving the content and 
the schema of derived views in connection to the source 
changes is highly relevant in the context of temporal data 
warehouses. Bellahsene (2002) distinguishes two sub 
problems, view maintenance and view adaptation [9]. 
Considering the width of the problem, we refer the reader 
to Gupta & Mumick (1995) for  taxonomy of view 
maintenance problems [10] and a description of the main 
techniques proposed in the literature. 
     Yang & Widom (1998)[11] describe an architecture that 
uses incremental techniques to automatically maintain 
temporal views over non-temporal source relations, 
allowing users to ask temporal queries on these views. De 
Amo & Halfeld Ferrari Alves (2000) present a self-
maintainable temporal data warehouse that, besides a set of 
temporal views, includes a set of auxiliary relations 
containing only temporal information. Bellahsene (1998) 
[12] proposes an extended relational view model to support 
view adaptation, aimed at maintaining data coherence and 
preserving the validity of the existing application 
programs.                     
In the EVE framework (Lee, Nica, & Rundensteiner, 
2002),  in  order  to  automate  the  redefinition of  a  view  
in  response  to  schema  changes  in the data sources, the 
database administrator is database administrator is allowed 
to embed her preferences about view evolution into the 
view definition itself. The preference-based view rewriting 
process, called view synchronization, identifies and 
extracts appropriate information from other data sources as 
replacements of the affected components of the original 
view definition, in order to produce an alternative view that 
somehow preserves the original one. Finally, the DyDa 
framework (Chen, Zhang, & Rundensteiner, 2006) 
supports compensating queries that cope with erroneous 
results in view maintenance due to concurrent updates in 
data source, in presence of data and schema changes. 
        A distinctive feature of the AutoMed system (Fan & 
Poulovassilis, 2004) is the capability of handling  not  only  
schema  evolutions  in materialized data integration 
scenarios, but also changes in the data model in which the 
schema is expressed (e.g., XML vs. relational).  
   With reference to the problem of keeping the data 
warehouse in sync with the sources, Wrembel and Bebel 
(2007) propose a metamodel for handling changes in the 
operational data sources, which supports the automatic 
detection of structural and content changes in the sources 
and their automatic propagation to the data warehouse. 
Finally, Combi & Oliboni (2007) focus on the management 
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of time-variant semi-structured XML data within the data 
warehouse. In particular, they propose a representation 
based on graphs whose nodes denote objects or values and 
are labeled with their validity interval. 
 

IV. HANDLING  CHANGES IN THE DATA MART 
   Content changes result from user activities that perform 
their day-to-day work on data sources by means of 
different applications (Wrembel & Bebel, 2007). These 
changes are reflected in the data warehouse and then in the 
data marts fed from it. The multidimensional model 
provides direct support for representing the sequence of 
events that constitute the history of a fact: by including a 
temporal dimension (say, with date granularity) in the fact, 
each event is associated to its date. For instance, if we 
consider an ORDER fact representing the quantities in the 
lines of orders received by a company selling PC 
consumables, the dimensions would probably be product, 
order Number, and order Date. Thus each  line  of  order 
would be associated to the ordered product, to the number 
of the order it belongs to, and to the order date. On the 
other hand, the multidimensional model implicitly assumes 
that the dimensions and the related levels are entirely 
static. This assumption is clearly unrealistic in most cases; 
for instance, considering again the order domain, a 
company may add new categories of products to its catalog 
while others can be dropped, or the category of a product 
may change in response to the marketing policy. Another 
common assumption is that, once each line of order has 
been registered in a data mart, it is never modified so that 
the only possible writing operation consists in appending 
new line of orders as they occur. While this is acceptable 
for a wide variety of domains, some applications call for a 
different behavior; for example the quantity of a product 
ordered in a given day could be wrongly registered or 
could be communicated after the ETL process has run. 
These few examples emphasize the need for a correct 
handling of changes in the data mart content. Differently 
from the problem of handling schema changes, the issues 
related to data changes have been widely addressed by 
researchers and practitioners, even because in several cases 
they can be directly managed in commercial DBMSs.  
 

V. DESIGNING TEMPORAL DATA WAREHOUSES 
   It is widely recognized that designing a data warehousing 
system requires techniques that are radically different from 
those normally adopted for designing operational  
databases (Golfarelli & Rizzi, 1999). On the other hand, 
though the literature reports several attempts to devise 
design methodologies for data warehouses, very few 
attention has been posed on the specific design issues 
related to time. Indeed, as stated by Rizzi et al. (2006), 
devising design techniques capable of taking time and 
changes into account is one of the open issues in data 
warehouse research. Pedersen  and  Jensen  (1999)  [13] 
recognize that properly handling time and changes is a 
must-have for multidimensional models. Sarda (1999) 
summarizes the distinguishing characteristics of time 
dimensions: they are continuously valued and constantly 
increasing, they can be associated with multiple user-

defined calendars, they express the validity of both facts 
and other dimensions (either in the form of time instants or 
validity intervals). Sarda also proposes a design 
methodology for temporal data warehouses featuring two 
phases: logical design, that produces relations 
characterized by a temporal validity, and physical design, 
that addresses efficient storage and access.Considering  the  
leading  role  played  by temporal  hierarchies  within  data  
marts  and OLAP  queries,  it  is  worth  adopting  adhoc 
approaches for their modeling not only from the logical, 
but also from the conceptual point of view. While all 
conceptual models for data marts  allow  for  temporal  
hierarchies  to  be represented like any other hierarchies, to 
the best of our knowledge the only approach that provides  
ad  hoc  concepts for  modeling time is the one by 
Malinowski & Zimányi (2008), based on a temporal 
extensions of the MultiDim conceptual model. Different 
temporality types are  allowed  (namely,  valid  time,  
transaction time, lifespan, and loading time), and temporal 
support for levels, properties, hierarchies, and measures is 
granted. Finally, Golfarelli & Rizzi (2007) [14] discuss the 
different design solutions that can be adopted in presence 
of late measurements, depending on the flow or stock 
nature of the events and on the types of queries to be 
executed.  
 

VI. OPEN ISSUES AND CONCLUSIONS 
    In this survey we classified and discussed the issues 
related to temporal data warehousing.We believe that, 
considering the maturity of the field and the wide diffusion 
of data warehousing  systems,  in  the  near  future  
decision makers will be more and more demanding for 
advanced temporal support. Thus, it is essential that both 
vendors and researchers be ready to deliver effective 
solutions. In this direction we envision two main open 
issues. On the one hand, some research aspects indeed 
require further investigation. For instance, support for 
cross version queries is not satisfactory yet, and its impact 
on performance has not been completely investigated; 
similarly, the effectiveness of view adaptation approaches 
is still limited.  
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